Vanilloid receptor TRPV1, sensory C-fibers, and vascular autoregulation: a novel mechanism involved in myogenic constriction.
نویسندگان
چکیده
Myogenic constriction describes the innate ability of resistance arteries to constrict in response to elevations in intraluminal pressure and is a fundamental determinant of peripheral resistance and, hence, organ perfusion and systemic blood pressure. However, the receptor/cell-type that senses changes in pressure on the blood vessel wall and the pathway that couples this to constriction of vascular smooth muscle remain unclear. In this study, we show that elevation of intraluminal transmural pressure of mesenteric small arteries in vitro results in a myogenic response that is profoundly suppressed following ablation of sensory C-fiber activity (using in vitro capsaicin desensitization resulted in 72.8+/-10.3% inhibition, n=8; P<0.05). Activation of C-fiber nerve endings by pressure was attributable to stimulation of neuronal vanilloid receptor, TRPV1, because blockers of this channel, capsazepine (71.9+/-11.1% inhibition, n=9; P<0.001) and ruthenium red (46.1+/-11.7% inhibition, n=4; P<0.05), suppressed the myogenic constriction. In addition, this C-fiber dependency is likely related to neuropeptide substance P release and activity because blockade of tachykinin NK1 receptors (66.3+/-13.7% inhibition, n=6; P<0.001), and not NK2 receptors (n=4, NS), almost abolished the myogenic response. Previous studies support a role for 20-hydroxyeicosatetraenoic acid (20-HETE) in myogenic constriction responses; herein, we show that 20-HETE-induced constriction of mesenteric resistance arteries is blocked by capsazepine. Together, these results suggest that elevation of intraluminal pressure is associated with generation of 20-HETE that, in turn, activates TRPV1 on C-fiber nerve endings resulting in depolarization of nerves and consequent vasoactive neuropeptide release. These findings identify a novel mechanism contributing to Bayliss' myogenic constriction and highlights an alternative pathway that may be targeted in the therapeutics of vascular disease, such as hypertension, where enhanced myogenic constriction plays a role in the pathogenesis.
منابع مشابه
TRPV4 channels contribute to renal myogenic autoregulation in neonatal pigs.
Myogenic response, a phenomenon in which resistance size arteries and arterioles swiftly constrict or dilate in response to an acute elevation or reduction, respectively, in intravascular pressure is a key component of renal autoregulation mechanisms. Although it is well established that the renal system is functionally immature in neonates, mechanisms that regulate neonatal renal blood flow (R...
متن کاملMorphine-induced analgesic tolerance is associated with alteration of protein kinase Cγ and transient receptor potential vanilloid type 1 genes expression in rat lumbosacral cord and midbrain
Introduction: Transient receptor potential vanilloid type 1 (TRPV1) and protein kinase Cγ (PKCγ) are involved in sensitization/desensitization to noxious stimuli. We aimed to examine the gene expression levels of TRPV1 and PKCγ in rat lumbosacral cord and midbrain on days 1, 4 and 8 of induction of morphine analgesic tolerance. Methods: Two groups of male Wistar rats received ...
متن کاملInteraction Between the Cannabinoid and Vanilloid Systems on Anxiety in Male Rats
Introduction: Previous studies have shown that the cannabinoid system is involved in anxiety.In addition, transient receptor potential vanilloid type-1 (TRPV1) channels are new targets for the development of anxiolytics. The present study investigated the possible interaction between the cannabinoid and vanilloid systems on anxiety-like behavior in rats. Methods: Four different groups of male ...
متن کاملTransient Receptor Potential Vanilloid 1
Background and structure Transient receptor potential vanilloid receptor 1 (TRPV1) is one of 6 members of the subfamily of vanilloid receptors that belongs to the family of transient receptor potential (TRP) channels. TRP channels are an intrinsic part of the mammalian sensory system responding to a broad range of stimuli such as temperature, touch, pain, osmolarity, pheromones, and taste (8). ...
متن کاملThe Role of C Fibers in Spinal Microglia Induction and Possible Relation with TRPV3 Expression During Chronic Inflammatory Arthritis in Rats
Introduction: Stimulation of peptidergic fibers activates microglia in the dorsal horn. Microglia activation causes fractalkine (FKN) release, a neuron-glia signal, which enhances pain. The transient vanilloid receptor 1 (TRPV1) mediates the release of neuropeptides, which can subsequently activate glia. TRPV1 and TRPV2 are generally expressed on C and Aδ fibers, respe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Circulation research
دوره 95 10 شماره
صفحات -
تاریخ انتشار 2004